	Track 1 (MS)	Track 2 (DGI)	Track 3 (AAU)
Chair	Ctirad Uher	Erik Schaltz	Bo B. Iversen
10.30-10.45	A2_1: Microwave sintering of Bi ₂ Te ₃ and PbTe based alloys: structure and thermoelectric properties Vasilevskiy, et al.	B2_1: Design and Numerical Evaluation of Cascade-type Thermoelectric Modules Takeyuki Fujisaka, et al.	A6_2: Low thermal conductivity materials investigated using inelastic neutron scattering Sebastian Christensen, et al.
10.45-11.00	A2_2: Synthesis and Thermoelectric properties of Ti _{1-x} Ta _x S ₂ solid solutions M. Beaumale, et al.	B2_2: TE Module Design under Given Thermal Input: theory and a design example G ao Min, et al.	A6_3: High temperature measurement of the Seebeck coefficient and the electrical conductivity J. de Boor, et al.
11.00-11.15		B2_3: Fabrication and Power Generation Characteristics of High-temperature Oxide Thermoelectric Module Le Thanh Hung, et al.	A6_4: Ultrafast time-resolved investigation of resonant oscillation of fillers in filled- skutterudites Liang Guo, et al.
11.15-11.30	A2_4: Thermal stability of β- Zn ₄ Sb ₃ – insights from transport and structural measurements T. Dasgupta, et al.	B2_4: Flexible Thermoelectric Devices Sung-Geun Park, et al.	A6_5: Lattice dynamics in LAST and related phases R. P. Hermann, et al.
11.30-11.45	A2_5: In-situ synthesis and thermoelectric properties of PbTe/rGO nanocomposites by utilizing a facile and novel wet chemical method J. D. Dong, et al.	B2_5: Process and Structural Optimization of a Planar-Type Thermoelectric Power Generator by Screen-Printing Technique Ju Hyung We, et al.	A6_6: Measurement of the Thermal Conductivity on Nano Scaled Thin Film Thermoelectrical Materials ClausLinseis, et al.
11.45-12.00	A2_6: Roles of Interstitial Mg in Improving Thermoelectric Properties of Sb-doped Mg ₂ Si _{0.4} Sn _{0.6} Solid Solutions Zhengliang Du, et al.	B2_6: Ba-Ga-Sn based clathrate for power generation module Atsushi Yamamoto, etal.	C_1.1: On some current trends in the development of thermoelectricity (part 1) L. I. Anatychuk

Monday Morning 10.30 - 12.00

	Track 1 (MS)	Track 2 (DGI)	Track 3 (AAU)
Chair	Terry Tritt	Douglas Crane	Mogens Christensen
13.00-13.15	A2_7: Thermoelectric Performance of Multiple- doped Co ₄ Sb _{12-x-y-z} Ge _x Te _y S _z Skutterudite Compounds Bo Duan, et al.	B8_1: Analysis of annular thermoelectric couples with non-uniform temperature distribution by means of 3D multiphysics simulation Andreas Bauknecht, et al.	
13.15-13.30	A2_8: Crystal structure and thermoelectric properties of Cu _{2+x} Sn _{1-x} Se ₃ phases Jing Fan, et al.	B8_2: Two Dimensional Thermal Resistance Analysis of a Waste Heat Recovery System with Thermoelectric Generators Gia-Yeh Huang, et al.	A6_8: Simultaneous Measurement of Thermoelectric Properties with the new IPM ZT-Meter A. Jacquot, et al.
13.30-13.45	A2_9: Thermoelectric Mn ₃ Si₄Al ₃ alloy as a medium temperature material R. Funahashi, et al.	B8_4: Numerical simulation of performance and thermomechanical behavior of thermoelectric modules with segmented bismuth telluride based legs Vasilevskiy, et al.	A6_9: Characterization of Electrodeposited Materials and Devices R. Rostek, et al.
13.45-14.00	A2_10: Phase Separation in IV-VI Alloys – Generation of Thermodynamically Stable Nano-Features Yaniv Gelbstein	B8_5: The Compatibility Factor Approach to the analysis of Intrinsic Efficiency in Thermoelectric Devices G Jeffrey Snyder	A6_10: Ge/SiGe Heteroepitaxial Materials for Thermoelectric Applications A. Samarelli, et al.
14.00-14.15		B8_6: Combined Simulation for thermoelectric devices and systemsP. Streit, et al.	A6_11: High temperature elastic moduli and thermal expansion of SnTe-SiC nanoparticle composites Robert D. Schmidt, et al.

14.15-14.30	A2_12: Anisotropic transport properties in bulk layered Cu _x TiS ₂ compounds E. Guilmeau, et al.	B8_7: Simulations for the development of thermoelectric measurements K. Zabrocki, et al.	A6_12: ThermoEMF of Silicon at high pressure up to 25 GPa. Vladimir V. Shchennikov, et al.
14.30-14.45	A2_13: Power-Factor Enhancement of Single- Crystalline Bi2Te3 Nanowires by Surface Modifications Bacel Hamdou, et al.	B8_8: Numerical modeling and design of thermoelectric cooling systems and its application to manufacturing machines A. Gallo, et al.	A6_13: The Hot Disk Structural Probe Technique for Thermal Conductivity Measurements of Inhomogeneous Materials A. Sizov, et al.
14.45-15.00	A2_14: Nanostructure control and its impact on lattice thermal conductivity of bulk PbTe-base materials Teruyuki Ikeda, et al.	A6_7: A new test rig for accurate non-parametric measurement and characterisation of thermoelectric generators Andrea Montecucco, et al.	A6_14: Simultaneously characterizing local thermal conductivity and seebeck coefficient by scanning thermoelectric microscopy Huarong Zeng, et al.

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Wenqing Zhang	Wei Wang	Masashi Mikami
15.30-15.45	A2_15: Solid State Synthesis and Thermoelectric Properties of Bi- and Sb-doped Mg ₂ Si Materials M. Ioannou, et al.	B7_1: A novel zT-meter based on the porcupine method and a survey on the size of the snout correction needed in various thermoelectric devices	A6_15: Thermoanalytical and Thermophysical Characterization of Lead, Bismuth and Antimony Chalcogenides
		Andrea De Marchi, et al.	Ekkehard Post, et al.
15.45-16.00	A2_16: Valence Band Structure of Highly Efficient p- type Thermoelectric PbTe/PbS Alloys	B7_2: Design of a standalone and portable test system for a thermoelectric power generator module	A1_1: Enhancement of thermoelectric performance of Bi _{0.4} Sb _{1.6} Te ₃ compounds by chemical potential tuning
	C.M. Jaworski, et al.	Amir Yadollah Faraji, et al.	Kyu Hyoung Lee, et al.
16.00-16.15	A2_17: Study of solid solution of Mg ₂ (Si,Ge,Sn) and effect of Bi and Sb doping on their thermoelectric properties	B7_3: High Temperature Segmented Thermoelectric Modules for Combustion Driven Portable Thermoelectric	A1_2: Enhanced thermoelectric properties of CePd ₃ through thermal conductivity reduction
	Atta U. Khan, et al.	Power Generation Systems JP. Fleurial, et al.	Stephen R. Boona , et al.
16.15-16.30	A2_18: Crystal Structure and Thermoelectric Properties of Partially Cr-substituted MnSiy $(\gamma \sim 1.7)$	B7_4: Fabrication of skutterudite-based thermoelectric module for high temperature applications	A1_3: Bismuth telluride based nanostructured materials from gas-induced reduction method
	Y. Kikuchi, et al.	J. García-Cañadas, et al.	K. F. Cai, et al.
16.30-16.45	A2_19: Thermoelectric properties of ZnIn ₁₈ SiSb ₂₀ and ZnIn ₁₈ GeSb ₂₀ Donghun Kim, et al.	B7_5: Power generation performance and durability of skutterudite thermoelectric generator	A1_4: Ge/SiGe Superlattices for Thermoelectric Devices Grown by Low-Energy Plasma- Enhanced Chemical Vapor Deposition (LEPECVD)
		H. Y. Geng, et al.	S. Cecchi, et al.
16.45-17.00	A2_20: Investigations on the Fermi-Level Pinning effect in Ti doped PbTe	B7_6: High-Performance Thin- Film Thermoelectric Devices U. Ghoshal	A1_5: Low Temperature Transport Properties of Bi ₂₋ _x Tl _x Te ₃ Single Crystals
	J. D. Koenig, et al.		Hang Chi, et al.

Monday Afternoon 15.30 - 18.30

17.00-17.15	A2_21: Copper ion liquid-like thermoelectrics Huili Liu, et al.	B7_7: Thermoelectric Power Generator Using Oxide Single Crystals Yu-Chin Hsieh, et al.	A1_6: Giant spin-Seebeck effect in InSb J .P. Heremans, et al.
17.15-17.30	A2_22: Enhanced thermoelectric properties of n-type Mg _{2.16} (Si _{0.4} Sn _{0.6}) _{1-y} Sb _y due to nano-sized Sn-rich precipitates and optimized electron concentration Wei Liu, et al.	B7_8: DEVELOPMENT OF LOW-COST TELECONTROLED GENERATORS BASED ON COMMERCIAL BITE THERMOELECTRICS L. E. Juanicó, et al.	A1_7: Improving thermoelectric properties of n-type bismuth telluride based alloys by deformation induced lattice defects and texture enhancement L.P. Hu, et al.
17.30-17.45	A2_23: Synthesis and Thermoelectric Properties of $Cu_{12}Sb_4S_{13}$ Xu Lu, et al.	B7_9: Two-stage Planar Thermoelectric Micro Cooler: Design, Fabrication, and Cooling Capacity Deuk-Hee Lee, et al.	A1_8: Thermoelectric properties of alkali-doped Bismuth-Antimony alloys and discovery of potassium as a resonant impurity Hyungyu Jin, et al.
17.45-18.00	A2_24: Nanoscale materials by design: [(MSe) _{1+δ}] _m [TSe ₂] _n ferecrystal intergrowths Daniel B. Moore, et al.	B7_10: Fabrication of thermoelectric generator using electrochemical deposition Li-Ling Liao, et al.	
18.00-18.15	A2_25: Nanostructuring and thermoelectric characterization of Ga _{m+4/3} Sb _m Te ₂ Toshimichi Nakayama, et al.	B7_11: Thermal to Electrical Energy Conversion of Skutterudite Based Thermoelectric Modules James R. Salvador, et al.	A1_10: Optimization of Annealing Process of Screen Printed Sb ₂ Te ₃ and Bi ₂ Te ₃ Thick Films for Power Generator Sun Jin Kim, et al.
18.15-18.30	A2_26: Doping Studies of I-V- VI2 Compounds with Intrinsically Minimal Thermal Conductivity Michele D. Nielsen, et al.	B7_12: Impact of radiation heat transfer on thermoelectric figure of merit in ultra-small micro-coolers Ryan P. Shea, et al.	A1_11: Remarkable ZT enhancement of a bismuth telluride nanocompound with complementary fabrication procedures Cham Kim, et al.

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Titas Dasgupta	Jan D. König	Donald T. Morelli
10.00-10.15	A2_27: Band Engineering in Thermoelectric Lead Chalcogenides Yanzhong Pei, et al.	B7_13: High-Temperature Power Generation Devices from Nanostructured Half- Heusler Materials J. D'Angelo, et al.	A1_12: Electrodeposition of Sb _x Te _y and Bi _x Te _y thin films for thermoelectric application Jae-Hong Lim, et al.
10.15-10.30	A2_28: Correlation Between Microstructure and Thermoelectric Properties in $Ag_{1-y}Pb_{18}Sb_{1+z}Te_{20}$ S. Perlt, et al.	B7_14: Nano-crystal films and related micro-thermoelectric module fabricated by Electrodeposition Wei Wang, et al.	A1_13: Effect of milling and sintering on interaction between anti-side defects and vacancies in structure and thermoelectric properties of n-type Bi ₂ (Te, Se) ₃ compounds Chun-Kai Lin, et al.
10.30-10.45	A2_29: On the thermoelectric properties of Zintl-type solid solutions Mg ₃ Bi _{2-x} Pn _x (Pn = P and Sb)* V. Ponnambalam, et al.	B_1: Implementation and Performance of Skutterudite Based Thermoelectric Generators A. J. Thompson, et al.	A1_14: Improving Thermoelectric properties of ZrSe ₂ via Li Intercalation Yufei Liu, et al.
10.45-11.00	A2_41: Crystal structure and thermoelectric properties of misfit layered sulfides [Ln ₂ S ₂] _p NbS ₂ (Ln = lanthanides) Yuzuru Miyazaki, et al.	B_2: Material and Contact reliability aspects of a BiTe thermoelectric material for low power RTG application N. Yang, et al.	A1_15: Enhanced dimensionless figure-of-merit in hydrothermally-synthesized and vacuum-sintered Bi ₂ . _x Sb _x Te ₃ Chia-Jyi Liu, et al.
11.00-11.15	A2_31: Bismuth-doped nanoscopic lead telluride: percolation effects and their influence on thermoelectric properties S. Schlecht, et al.	B4_1: Thermoelectric Cooling of Powerful LED: Experimental Results R.I. Dekhtiaruk, et al.	A1_16: Enhancement of thermoelectric properties of n-type Bi₂(Te _{1-x} Se _x) ₃ via a "double SPS" texturing method Q.Lognoné, et al.

Tuesday Morning 10.00 - 12.00

11.15-11.30	A2_32: Influence of Sn, In and Li substitution on the structure and the thermoelectric properties of $(GeTe)_n(Sb_2Te_3)$ (1 < n < 20) Thorsten Schröder, et al.	B4_2: Thermal management optimization of a thermoelectric-integrated methanol evaporator using a compact CFD modeling approach Xin Gao, et al.	A1_17: Effects of pre-press annealing on transport properties of N-type Bi2(Se,Te)3 compounds prepared by powder metallurgy Meng-Pei Lu, et al.
11.30-11.45	A2_33: Copper-based Novel Thermoelectric Materials Xun Shi, et al.	B4_3: DEVELOPMENT OF A PORTABLE GENERATOR FOR UNCONTROLLED FIRE SOURCES L. E. Juanicó, et al.	A1_18: Effect of W substitution on thermoelectric performance of Heusler Fe ₂ VAI alloy M. Mikami, et al.
11.45-12.00	A2_34: Thermoelectric properties of mineral tetrahedrites Koichiro Suekuni, et al.	B4_4: A NEW THERMAL- HYDRAULIC DESIGN OF AUTONOMOUS GENERATORS COOLED BY LOW-COST WATER LOOPS L. E. Juanicó, et al.	A1_19: Grain size effect on thermoelectric properties of Heusler Fe ₂ VAI thin films A. Nishide, et al.

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Lidong Chen	Kazuaki Yazawa	Nini Pryds
13.00-13.15	A2_35: The effect of Ni, Pd and Pt substitution on thermoelectric properties of CoSi alloys Hui Sun, et al.	B6_1: Investigation of Maximum Power Point Tracking Algorithms for Thermoelectric Generators. Navneesh Phillip, et al.	A1_20: Optimizations of Pulsed Plated p and n-type Bi ₂ Te ₃ -based Ternary Compounds by Annealing in Different Ambient Atmospheres
13.15-13.30	A2_36: A comparative study of $Co_{1-x}Fe_xSb_3$ synthesized via solid state and chemical co- precipitation precursor routes	B6_3: Evaluation on High Step-up Power Electronics Stages in Thermoelectric Generator System with MPPT Control	C. Schumacher, et al. A1_21: Improvement in thermoelectric performence of Fe2VAI-based materials by means of heavy element partial substiturions
	M. Y. Tafti, et al.	Kai Sun, et al.	Tsunehiro Takeuchi, et al.
13.30-13.45	A2_37: Enhanced thermoelectric performances in melt spun CeFe ₄ Sb ₁₂ by in- situ CeSb ₂ nano-inclusions G. J. Tan, et al.	B6_4: A TEG Efficiency- Booster with Buck-Boost Conversion Hongfei Wu, et al.	A1_22: Improvement of Thermoelctric Properties of PEDOT/PSS Films by Addition of Gold Nanoparticles Naoki Toshima, et al.
13.45-14.00	A2_38: Effects of Ge dopant on thermoelectric properties of Barium and Indium double- filled p-type Skutterudites J. Yu, et al.	B5_1: Co-Optimized Design of Micro Plate-Fin Heat Exchangers for Thermoelectric Generators A. Rezania, et al.	A1_23: Micro structure influences on the thermoelectric properties of TM ₃ compounds (T = Fe, Ru; M = Ga, In) M. Wagner-Reetz, et al.
14.00-14.15	A2_39: Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu _{2+x} Zn _{1-x} GeSe ₄ Wolfgang G. Zeier, et al.	B5_2: Cost Performance Analysis and Optimization of Burning Fuel TE Power Generators Kazuaki Yazawa, et al.	A1_24: Investigations on the performance of electrodeposited Multi-walled carbon nanotubes/Bi ₂ Te ₃ thermoelectric composite films Han Xu, et al.

Tuesday Afternoon 13.00 - 15.00

14.15-14.30	A5_1: Thermoelectric properties of nano- Co _{0.97} Pd _{0.03} Sb ₃ E. Alleno, et al.	B5_3: New Perspectives in Thermoelectric Energy Recovery System Design Optimization Terry J. Hendricks, et al.	A1_25: Thermally Evaporated Bi ₂ Te ₃ Thermoelectric Thin and Thick Films and Fabrication of Their Micro-devices by Lithography A.J. Zhou, et al.
14.30-14.45	A5_2: Nanostructured bulk materials for room temperature applications based on colloidally grown semiconductor nanocrystals Clint Ballinger, et al.	B1_1: Kinetics and Thermoelectric Transport Properties of Ni-Ca ₃ Co ₄ O ₉ Interfaces Tim C. Holgate, et al.	A1_26: Nano Processing and Thermoelectric Characterization of Polycrystalline FeSb ₂ Song Zhu, et al.
14.45-15.00	A5_3: Electrochemical Deposition and Characterization of p-type and n-type Thermoelectric Thin Films of Bi _x Sb _y Te _z from Identical Electrolyte Solutions Waruna Wijesekara, et al.	B1_2: Characterization of Electrical and Thermal Contact Resistances of Bi-Sb-Te/metal Interfaces Yu-Lin Liu, et al.	A3_1: Highly efficient Heusler compounds for thermoelectric applications B. Balke, et al.

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Zhixi Bian	Jeff Snyder	Ryoji Funahashi
15.30-15.45	A5_4: Design and	B3_1: Efficient Power	A3_2: Lower Thermal
	development of conductive	Management for Energy	Conductivity and Higher
	polymer with silicon	Autonomous Wireless Sensor	Thermoelectric Performance
	nanoparticles for in	Nodes for Aeronautical	of Fe-Substituted and Ce, Yb
	cooperation into	Applications	Double-Filled P-type
	thermoelectric devices		Skutterudites
		A. Elefsiniotis, et al.	
	Shane Ashby, et al.		S. Ballikaya, et al.
15.45-16.00	A5_5: Distributed resonant	C6_1: A Thermal Glider	A3_3: Thermoelectric
	carrier scatterings as a	Autonomous Underwater	Properties of La and other
	realization of three-	Vehicle Power System	Rare-Earth double-doped
	dimensional electron energy		SrTiO ₃ Ceramics Synthesized
	filtering for thermoelectric	J. R. Buckle	by Spark Plasma Sintering
	power factor enhancement		
			Sriparna Bhattacharya, et al.
	Je-Hyeong Bahk, et al.		
16.00-16.15	A5_6: Surfactant-based	C6_2: Thermoelectricity for	A3_4: Structure and High
	synthesis of stoichiometric	Green Building Exterior	Temperature Thermoelectric
	bismuth telluride	Glasses	Properties of a New Rare-
	nanoparticles with good		Earth Based Zintl Phase
	thermoelectric properties	Salman Bin Inayat, et al.	
			Sabah Bux, et al.
	V. Stavila, et al.		
16.15-16.30	A5_7: Thermoelectric	C6_3: Application of	A3_5: Copper selenide: a
	transport in nanostructured	thermoelectric heat pump to	NASA's historical perspective
	Mg ₂ Si _x Sn _{1-x}	a 6kWth steam Rankine cycle	
		plant.	T. Caillat, et al.
	Zhixi Bian, et al.		
		Jonathan Siviter, et al.	

Tuesday Afternoon 15.30 - 16.30

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Clint Ballinger	Ali A. Enkeshafi	Yuzuru Miyazaki
10.00-10.15	A5_8: Enhanced Thermoelectric Properties of Na _x CoO ₂ thin films Peter Brinks, et al.	C_1.2: On some current trends in the development of thermoelectricity (part 2) L. I. Anatychuk	A3_6: Improvement of thermoelectric properties for tin substituted indium oxide by bulk process method E. Combe, et al.
10.15-10.30	A5_9: Structure and transport properties of bulk nano- thermoelectrics based on Bi _x Sb _{1-x} Te ₃ fabricated by SPS method L.Bulat, et al.	C_2: Investigation on the Performance of Thermoelectric Energy Harvesters under Real Flight Conditions A. Elefsiniotis, et al.	A3_7: ZT ~1 for bulk clathrate- I Ba ₈ Zn _x Ge _{46-x} doped with Ni and Sn M. Falmbigl, et al.
10.30-10.45	A5_10: Solution-processed nanostructures to enhance the thermoelectric properties of chalcogenide-based nanocomposites D. Cadavid, et al.	C2_1: TEG On-Vehicle Performance and Model Validation and What It Means For Further TEG Development D.T.Crane, et al.	A3_8: In situ preparation and thermoelectric properties of B _x C-TiB ₂ composites B. Feng, et al.
10.45-11.00	A5_11: Highly ordered alignment of molecular chains and the enhanced thermoelectric performance of polyaniline-based composites Lidong Chen, et al.	C2_2: DEVELOPMENT OF A THERMOELECTRIC GENERATOR PROTOTYPE FOR HEAVY DUTY VEHICLES WITHIN THE SWEDISH E4- MISTRA RESEARCH PROGRAM J. Edvardsson, et al.	A3_9: The role of phase relations and Ca to Co ratio in thermoelectric properties of Ca ₃ Co ₄ O ₉ Harald Fjeld, et al.
11.00-11.15	A5_12: Precise control of single barrier thermal resistance in Ge/Si multilayers Peixuan Chen, et al.	C2_3: Simulations and Measurements of an Automotive TEG-EGR Cooler O. Högblom, et al.	A3_10: Thermoelectric Materials for High Temperature Applications (> 1200 K) JP. Fleurial, et al.

Wednesday Morning 10.00 - 12.00

11.15-11.30	A5_13: Nanoscale thermoelectric metrology A. Cuenat, et al.	C2_4: Automotive Thermoelectric Generators and Air Condioner/Hetaers John W. Fairbanks	A3_11: Thermoelectric Properties of PLD Grown Ca₃Co₄O ₉ Thin Films HU. Habermeier , et al.
11.30-11.45	A5_14: Integration of multiple linked arrays of silicon nanowires into planar thermoelectric microgenerators D. Dávila, et al.	C4_1: An update on the development of high- temperature, high-efficiency thermoelectric converters for space applications T. Caillat, et al.	A3_12: Thermoelectric Properties of Al-doped ZnO prepared by Spark Plasma Sintering Li Han, et al.
11.45-12.00	A5_15: Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sb- based skutterudites G. Rogl, et al.	C4_2: Performance analysis of a thermoelectric solar collector integrated with heat pump C. Lertsatitthanakorn, et al.	A2_40: High performance p- type magnesium silicon thermoelectric semiconductor T.Kajitani, et al.

<u>Wednesday</u>	<u>y Afternoon</u>	13.00 - 15.00
		· · · · · · · · · · · · · · · · · · ·

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Peter Rogl	Dirk Ebling	Thierry Caillat
13.00-13.15	A5_16: Measurement of Thermoelectric Properties of Semiconducting Nanowires S. Karg, et al.	C1_1: Development of an energy transducer for the energy recovery by thermoelectric generators from metal forming processes D.G. Ebling, et al.	A3_14: Enhancement of thermoelectric figure-of-merit and developing a contact layer on nanostructured half- Heuslers Giri Joshi, et al.
13.15-13.30	A5_17: Thermoelectric Enhancement of Rare Earth Arsenide Nanoparticles Coherently Embedded in Thin Film InGaAs Rachel Koltun, et al.	C1_2: The virtual continuous TEG model – Efficient optimization of thermogenerators J.Kitte, et al.	A3_15: Effect of Oxygen Content on Thermoelectric Properties of Oxide Materials Lassi Karvonen , et al.
13.30-13.45	A5_18: Reducing Thermal Conductivity by Introducing Nanostructured Laminar Sodium Titanate into Titania Host for Thermoelectric Application Chengyan Liu, et al.	C1_3: Megawatt-Scale Application of Thermoelectric Devices in Thermal Power Plants. Andrew Knox, et al.	
13.45-14.00	A5_19: Engineering the Thermoelectric Power Factor of Si and Ge Ultra Narrow 1D Nanowires and 2D Thin Layers Using Atomistic Modeling Neophytos Neophytou, et al.	C1_4: Three-dimensional Numerical and Experimental Study on Thermoelectric Generator Module Y.C. Tsai, et al.	A3_17: The effect of lattice parameter on thermoelectric properties of SrTiO ₃ Yukimasa Nishimura, et al.

The 31st International & 10th European Conference on Thermoelectrics, July 9th-12th 2012, Aalborg, Denmark.

14.00-14.15	A5_20: Thermoelectric properties of size-controlled bulk silicon nanocrystals prepared by self-limiting oxidation and HF-etching Y. Ohishi, et al.	C3_1: Simulation, Design and Test of Thermoelectric Thermal Management System for a 24/7 Portable Power System Comprising PV Solar Panels, PEM Hydrolyser, Metal Hydrides Canister for Hydrogen Storage, PEM Fuel Cell and a Ni-MH Backup Battery Matteo Paolo Codecasa, et al.	A3_18: Thermoelectric properties of ternary molybdenum sulfides containing Mo _{3n} S _{3n+2} clusters Michihiro Ohta, et al.
14.15-14.30	A5_21: From Bulk to Bulk- Nanostructured Bi ₂ Te ₃ based Materials using Top-down Approaches. Vicente Pacheco, et al.	C5_1: Microfluidic low cost calorimeters for biological and chemical applications Jürgen Antes, et al.	A3_19: Extremely Low Thermal Conductivity in Oxides with Cage-like Crystal Structure Michitaka Ohtaki, et al.
14.30-14.45	A5_22: Production of nano- Bi ₂ Te ₃ and nano-(Bi,Sb)Te ₃ for Printing Thermoelectric Generators U. Pelz, et al.	A4_1: Thermoelectric Properties of New Transistion Metal Chalcogenides Nunna Raghavendra, et al.	A1_9: Low temperature Bi-Sb thermoelectric material fabrication by chemical method B. Khasimsaheb , et al.
14.45-15.00	A5_23: Effect of composition on grain size of clathrates produced by melt spinning A. Prokofiev, et al.	A4_2: Physical properties of thermoelectric zinc antimonide using first- principles calculations Philippe Jund, et al.	A3_21: Very heavily doped CrSi2 as a high performance high temperature thermoelectric material David S. Parker, et al.

	Wednesday	/ Afternoon	15.30 -	17.00
--	-----------	-------------	---------	-------

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Anders Palmqvist	Georg Madsen	Harald Fjeld
15.30-15.45	A5_24: The influence of grain boundary scattering on thermoelectric properties of Mg ₂ Si and Mg ₂ Si _{0.8} Sn _{0.2} Pshenai-Severin D.A. , et al.	A4_3: Effect of impurities in electronic density of states of ScN studied by first-principles calculations and implication for thermoelectric properties Sit Kerdsongpanya, et al.	A3_23: Influence of oxygen non-stoichiometry on thermoelectric properties of $Ca_3Co_4O_{9+\delta}$ Matthias Schrade, et al.
15.45-16.00	A5_25: Modulation doping of ALD grown Al-doped ZnO thin films for power factor enhancement Mikko Ruoho, et al.	A4_4: Effect of nanopores on mechanical properties of β - Zn₄Sb₃: A molecular dynamics study Guodong Li, et al.	A3_24: Thermoelectric Properties of Ca _{3-x} Y _x Co ₄₋ _y Fe _y O _{9+δ} with co-doping of Yttrium and Iron NingYu Wu, et al.
16.00-16.15	A5_26: High-temperature performance of stacked nanowire silicon for thermoelectric power generation A. Stranz, et al.	A4_5: The Thomson Challenge: Why does the Thomson coefficient vary so markedly in real elements of the Periodic Table? Jeffery Lewins	A3_25: Simultaneously optimizing the independent thermoelectric properties in p-type Ti(Co,Fe)Sb alloy by in situ forming InSb nanoinclusions W.J. Xie, et al.
16.15-16.30	A5_27: Thermoelectric properties of bismuth telluride superstructures and superlattices with antisite and vacancy defects K.Termentzidis, et al.	A7_1: Fast synthesis of doped Mg ₂ Si assisted by microwave heating David Berthebaud, et al.	 A3_26: Effects of Pr doping on electrical transport properties of CaMnO_{3+δ} (0≤x≤0.15) oxides F. P. Zhang, et al.
16.30-16.45	A5_28: New insights for nanoalloyed thermoelectric Bi ₂ Te ₃ /Sb ₂ Te ₃ - superlattices M. Winkler, et al.	A7_2: Cross-plane electrical conductivity measurement using finite element model K. Bertram, et al.	A3_27: The effect of liquid- like ions on the thermoelectric properties of Cu ₂ Se David Brown, et al.

The 31st International & 10th European Conference on Thermoelectrics, July 9th-12th 2012, Aalborg, Denmark.

16.45-17.00	A5_29: Very high	A7_3: Texturing of	A2_11: In-based
	thermoelectric power factor	(Bi _{0.2} Sb _{0.8}) ₂ Te ₃ Nanopowders	Skutterudites: Prospects and
	of a Fe ₃ O ₄ /SiO ₂ /p-type Si(100)	by Open Die Pressing	Realities
	heterostructure		
		S. Ceresara, et al.	A. Grytsiv, et al.
	M.Zervos, et al.		

	Track 1 (MS)	Track 2 (AAU)	Track 3 (DGI)
Chair	Lev Bulat	Franck Gascoin	Eckhard Müller
10.00-10.15	A5_30: Novel Transverse Thermoelectrics for Nanoscale and Cryogenic Applications Chuanle Zhou, et al.	A4_6: Datamining High- Throughput DFT calculations in the search for new thermoelectric materials Georg K. H. Madsen, et al.	A7_4: Accurate Measurements of Thermal Conductivity of SiGe Thermoelectric Materials L. Ferre Llin, et al.
10.15-10.30	A5_31: Nanograin effects on the thermoelectric properties of poly-Si nanowiress X.Zianni, et al.	A4_7: The thermoelectric properties of the ferroelectric strontium-barium- niobate G. D. Mahan	A7_5: A process for thermal conductivity measurement of an individual bismuth nanowire in quartz template Yasuhiro Hasegawa ¹ , Masayuki Murata, et al.
10.30-10.45	A5_32: Thermoelectric Transport in Bi ₂ Te ₃ /Sb ₂ Te ₃ heterostructures Nicki F. Hinsche, et al.	A4_8: Structure, Bonding, Anharmonicity, and Minimal Thermal Conductivity in Thermoelectric Semiconductors Donald T. Morelli, et al.	A7_7: Identifying optimal protocols in high temperature Seebeck coefficient metrology J. Martin
10.45-11.00	A5_33: Bottom-up processing of thermoelectric nanocomposites Maria Ibáñez, et al.	A4_9: Molecular dynamics study on lattice thermal conductivity of PbTe _{1-x} Se _x alloys Takuru Murakami, et al.	A7_8: Nanocrystalline thermoelectrics synthesized by alkalide reduction and their characterization Jason A. Michel, et al.
11.00-11.15	A5_34: Tailoring the properties of semiconductor nanowires for thermoelectric applications by means of metal-assisted chemical etching Nadine Geyer, et al.	A4_10: Microscopic mechanism of low thermal conductivity in lead telluride T. Shiga, et al.	A7_9: Interferometric Analysis of Thermo-Mechanical Stress in Thermoelectric Generators Marlis Morschel, et al.

<u>Thursday Morning 10.00 – 11.45</u>

The 31st International & 10th European Conference on Thermoelectrics, July 9th-12th 2012, Aalborg, Denmark.

11.15-11.30	A_1: Preparation and	A4_11: Alkali Metal Dynamics	A7_10: Absolute heat flow
	properties of a thermoelectric	in the β-Pyrochlores AOs_2O_6	 measurement for the
	device using p-n junctions	(A = K, Rb, Cs) and Their	characterisation of
		Prospects as Thermoelectric	thermoelectric generators: A
	A. Becker, et al.	Materials	candidate for traceable
			metrology
		E. Shoko, et al.	
			P. Ziolkowski, et al.
11.30-11.45	A_2: Design and Optimization	A4_12: Transport and	
	of Gradient Interface of	Thermoelectric Performance	
	$Ba_{0.3}In_{0.3}FeCo_{3}Sb_{12}/$	in PbTe and PbSe	
	Bi _{0.48} Sb _{1.52} Te ₃ Thermoelectric		
	Materials	David J. Singh, et al.	
	H.Y. Zhou, et al.		